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Abstract

A number of reasoning problems involving the ma-
nipulation of temporal information can be viewed
as implicitly inducing an ordering of decisions in-
volving time (associated with durations or order-
ings of events) on the basis of preferences. For
example, a pair of events might be constrained to
occur in a certain order, and, in addition, it might
be preferable that the delay between them be as
large, or as small, as possible. This paper explores
problems in which a set of temporal constraints is
specified, each with preference criteria for mak-
ing local decisions about the events involved in the
constraint. A reasoner must infer a complete so-
lution to the problem such that, to the extent pos-
sible, these local preferences are met in the best
way. Constraint-based temporal reasoning is gener-
alized to allow for reasoning about temporal prefer-
ences, and the complexity of the resulting formal-
ism is examined. While in general such problems
are NP-complete, some restrictions on the shape of
the preference functions, and on the structure of the
set of preference values, can be enforced to achieve
tractability. In these cases, a generalization of a
single-source shortest path algorithm can be used
to compute a globally preferred solution in polyno-
mial time.

Introduction and Motivation

the imaging instrument if the instrumentis in use during slew-
ing. Consequently, it is preferable for the slewing activity not
to overlap any scanning activity, although because the detri-
mental effect on image quality occurs only intermittently, this
disjointness is best not expressed as a hard constraint. Rather,
the constraint is better expressed as follows: if there are any
start timest within T such that no scanning activity occurs
during the slewing activity starting &t thent is to be pre-
ferred. Of course, the cascading effects of the decision to
assigrt on the sequencing of other satellite activities must be
taken into account as well. For example, the selectioty of
rather than some earlier start time within, might resultin a
smaller overall contact period between the ground station and
satellite, which in turn might limit the amount of data that
can be downlinked during this period. This may conflict with
the preference for maintaining maximal contact times with
ground stations.

Reasoning simultaneously with hard temporal constraints
and preferences, as illustrated in the example just given, is
the subject of this paper. The overall objective is to develop
a system that will generate solutions to temporal reasoning
problems that arglobally preferredin the sense that the so-
lutions simultaneously meet, to the best extent possible, all
the local preference criteria expressed in the problem.

In what follows a formalism is described for reasoning
about temporal preferences. This formalism is based on a
generalization of the Temporal Constraint Satisfaction Prob-
lem (TCSP) framework [Dechtet al, 1991], with the addi-
tion of a mechanism for specifying preferences, based on the
semiring-based soft constraint formalism [Bistarelli al,

Some real world temporal reasoning problems can naturallf997] . The result is a framework for defining problems in-
be viewed as involving preferences associated with decisionglving soft temporal constraintsThe resulting formulation,
such as how long a single activity should last, when it shoulctalled Temporal Constraint Satisfaction Problems with Pref-
occur, or how it should be ordered with respect to other acerences (TCSPPs) is introduced in Section 2. A sub-class
tivities. For example, an antenna on an earth orbiting satellitef TCSPPs in which each constraint involves only a single
such as Landsat 7 must be slewed so that it is pointing at mterval, called Simple Temporal Problems with Preferences
ground station in order for recorded science data to be dowrn(STPPs), is also defined. In Section 3, we demonstrate the
linked to earth. Assume that as part of the daily Landsat hardness of solving general TCSPPs and STPPs, and pinpoint
scheduling activity a windoWV = [s, €] is identified within ~ one source of the hardness to preference functions whose
which a slewing activity to one of the ground stations for one“better” values may form a non-convex set. Restricting the
of the antennae can begin, and thus there are choices for adass of admissible preference functions to those with convex
signing the start time for this activity. Antenna slewing on intervals of “better” values is consequently shown to result
Landsat 7 has been shown to cause a vibration to the satellite a tractable framework for solving STPPs. In section 4, an
which in turn affects the quality of the observation taken byalgorithm is introduced, based on a simple generalization of



the single source shortest path algorithm, for finding globallylocal preference values found in the constraints. To formal-
best solutions to STPPs with restricted preference functionsze the process of combining local preferences into a global
In section 5, the work presented here is compared to othgreference, and comparing solutions, we impose a semiring

approaches and results. structure onto the TCSPP framework.
A semiringis a tuple(4, +, x, 0, 1) such that
2 Temporal Constraint Problems with e Aisasetand,1 ¢ A:
Preferences

e +, the additive operation, is commutative, associative
The proposed framework is based on a simple merger of two  ando0 is its unit element;
existing formalisms: Temporal Constraint Satisfaction Prob- S L L .
lems (TCSPs) [Dechtest. al, 1991], and soft constraints ~ ® x, the multiplicative operation, is associative, distributes
based on semirings [Bistaredt. al, 1997]1. The result of over+, 1 s its unit element an@ is its absorbing ele-
the merger is a class of problems called Temporal Constraint ment.
Satisfaction problems with preferences (TCSPPs). In a TCA c-semiringis a semiring in which+ is idempotent (i.e.,
SPP, asoft temporal constraint represented by a pair con- a + a = a,a € A), 1 is its absorbing element, and is
sisting of a set of disjoint intervals and a preference functioncommutative.

(I =A{[a1,b1],- .., [an,bn]}, f), wheref : I — A, andA is C-semirings allow for a partial order relatiefs over A to
a set of preference values. o o be defined as <g biff a + b = b. Informally, < gives us a
Examples of preference functions involving time are: way to compare tuples of values and constraints,@arg; b

e min-delay: any function in which smaller distances are ¢an be reat is better than aMoreover:+ andx are mono-
preferred, that is, the delay of the second event w.r.t. thé0N€ On<s; 0is its minimum and its maximum;(A, <g) is
first one is minimized. a complete lattice and, for all,b € A, a + b = lub(a,b)

o . (where lub=least upper bound). Ik is idempotent, then

) max-delay. assigning higher preference values to Iarger<A7 <s) is a complete distributive lattice and is its great-
distances; est lower bounddIb). In our main results, we will assume

e close to k assign higher values to distances which arex is idempotent and also restrigls to be a total order on
closer tok; in this way, we specify that the distance be- the elements ofd. In this casea + b = max(a,b) and
tween the two events must be as close as possillle to @ x b = min(a, b).

As with classical TCSPs, the interval component of a soft r;g’g?};?gggﬁ);fassesrgg;% dw\;\tir;haassegff{:gr? gé‘s&aﬁh
temporal constraint depicts restrictions either on the Star?akes an element from and returns an element of. The
times of events (in which case they are unary), or on the dis-" ~>. . . '
tance between pairs of distinct events (in which case they argemiring operations allow for complete solutions to be evalu-
binary). For example, a unary constraint over a variatle ated in terms of the preference values assigned locally. More
representing an event, restricts the domaiX ofepresenting p;?ﬁ;ﬁﬁlyi Aglier:( aO Sf;u}g%'h _a <1}¢,S?,E>Vl\;'éh aassosf(t) cggrt](?d
its possible times of occurrence; then the interval constraintcn NG, -+, 8, ), RN AR "
is shorthand fofa; < X < bi) V...V (an < X < by) Straint over variableX’;, X; and(v;, v;) be the projection of
A binary constraint oveX andY’, restricts the values of the tt%\ée;;h? vgiuis tass'gn)edTﬁ)exa:ﬁ:pfafgg )gin é?nbbrer\é:c—er_
distanc&” — X, in which case the constraint can be expresse Vi, Uj) = WX X;) ' P gp
as(ar <Y — X <b) V...V (an <Y — X < by). A uni- ence value given by;; is f;;(v; —v;), wherev; —v; € I; ;.
form, binary representation of all the constraints results fronf &y, where " = {xy,..., x4} is a set, andx is the
introducing a variableX, for the beginning of timeand re- multiplicative operator on the semiring, |&tF’ abbrewa_lte
casting unary constraints as binary constraints involving thé&! X - - - - Then the global preference valuetobal(t), is
distancex — X,. defined to b&)al(t) :'X{fij (Uj — ’Ui> | (Ui,’Uj> = thi,Xj}' '

An interesting special case occurs when each constraint ofh-l.-hr‘]a ﬁpt'm"’t‘L sokl)utlotns Olf a TCSPPI are t?]ose ?g'“tt',?’?s
a TCSPP contains a single interval. We call such problem tIC . a\&e b eth es dprg:' erer}c?h va UT’ w _er(-;-h est 1
Simple Temporal Problems with Preferen¢83PPs), dueto . € ermllge Y el or erln% 0 the values In the s_emlr-
the fact that they generalize STPs [Decheer al, 1991]. 'ng'l or examople, CO”Z' fer f € Sem'”rt@f?wtz I_'
This case is interesting because STPs are polynomially sol ’h]’mafég”;”’ +h>' usef or uzzly cor}s ralnl ?.0 vmg_”
able, while general TCSPs are NP-complete, and the effect ?C 1ex, 1 € preterence value of a solution wi

adding preferences to STPs is not immediately obvious. ThBE, the minimum of all the preference values associated
with the distances selected by this solution in all con-

next section discusses these issues in more depth. . . : .
A solutionto a TCSPP is a complete assignment to all theStraints, and the best solutions will be those with the max-

variables that satisfies the distance constraints. Each sol nal value. ~Another example is the semirirtg,, =

. . o {false,true}, Vv, A, false, true), which is related to solv-
tion has aglobal preference valy@btained by combining the ing classical constraint problems [Mackworth, 1992]. Here

lSemiring-based soft constraints is one of a number of forthere are only two preference valuésie andfalse the pref-
malisms for soft constraints, but it has been shown to generaliz€rence value of a complete solution will be determined by the
many of the others, e.g., [Freuder and Wallace, 1992] and [Schielogicalandof all the local preferences, and the best solutions
et. al, 1995]. will be those with preference valueue (sincetrue is better



thanfalsein the order induced by logical or). This semiring 3 Solving TCSPPs and STPPs is NP-Complete
thus recasts the classical TCSP framework into a TCSPP. As noted above, solving TCSPs is NP-Complete. Since the
G|Ven a constraint network, It Is Often Useful to f|nd the addition Of preference functions can On'y make the prob'em

corresponding minimal network in which the constraints areuf finding the optimal solutions more complex, it is obvious
as explicit as possible. This task is normally performed byhat TCSPPs are at least NP-Complete as well.

enforcing various levels of local consistency. For TCSPPs, in e turn our attention to the complexity of general STPPs.
particular, we can define a notion péth consistencyGiven e recall that STPs are polynomially solvable, thus one
two soft constraints(/1, f1) and(l2, f2), and a semiring,  might speculate that the same is true for STPPs. However,
we define: it is possible to show that in general, STPPs fall into the class
e theintersectiorof two soft constraintd; = (I, f;)and  0f NP-Complete problems.
Ty = (I, fo), written Ty &g 15, as the soft constraint Theorem 1 (complexity of STPPs)General STPPs are NP-

(I ® I, f), where complete problems.
— I, @ I, returns the pairwise intersection of intervals pyqof-:
in I; and/>, and First, we prove that STPPs belong to NP. Given an instance
— f(a) = fi(a) x fa(a)foralla € I, & Iy; of the feasibility version of the problem, in which we wish to

determine whether there is a solution to the STTP with global
: . A preference value- k, for somek, we use as a certificate the
andT’, = (Iz, f»), writtenTy @5 T, is the soft constraint - 5ot of times assigned to each event. The verification algorithm
T'=(L &I, f), where “chops” the set of preference values of each local preference
- reLohLifandonlyifthere existsavalug € I; ~ function atk. The result of a chop, for each constraint, is a
andt, € I, such that = ¢, + t,, and set of intervals of temporal values whose preference values
- _ are greater thah. The remainder of the verification process
= fla) =2 {fila) x folaz) | a=a1 +az.ar € oqieacioihe problem of verifying General Temporal CSPs
(TCSP), which is done by non-deterministically choosing an
interval on each edge of the TCSP, and solving the result-
A path-inducedconstraint on variablesy; and X; is ing STP, which can be done in polynomial time. Therefore,

RP™™ = ©gVk(Ty ® Ty;), i.e., the result of performing STTPS belong to NP. .
J v g .
oo v o s e 10 e Patnss e e o sty TG o
i andj. A constraintT;; is path-consistenif and only if 3" syl on. b ]y : o N We v3/iII i

» path - : path LS, = @1,01], -+ Ans On] - ) o
Ii; C R;; ", 1.e., Ty is atleast as strict aB;;" *. ATCSPP  piain 5 corresponding soft temporal constraint containing
is pa'th-consustent if and only if all its constraints are path-just one interval (thus belonging to an STPP). The semiring
consistent.

o , L that we will use for the resulting STPP is the classical one:
If the multiplicative operation of the semiring is idem- ¢  _ ({ false, true}, V, A, false, true). Thus the only

potent, then it is easy to prove that applying the operatiofyg allowed preference values are false and true (or 0 and

Tij := Tij &5 (Tir ©s Ti;) to any constrainti; of a TCSPP 1)~ Assuming that the intervals if are ordered such that
returns an equivalent TCSPP. Moreover, under the same COR; < sy fori € {1,...,n — 1}, the interval of the soft
dition, applying this operation to a set of constraints returnggnstraint is jusfar, b,]. The preference function will give
afinal TCSPP which is always the same independently of thg,|e 1 to values if and O to the others. Thus we have ob-
order of applicatioh Thus any TCSPP can be transformediained an STPP whose set of solutions with valgehich are
into an equivalent path-consistent TCSPP by applying the oppe optimal solutions, since <s 1 in the chosen semiring)
erationT;; := Ti; & (Tix © Tj;) to all constraintsly; until — cqincides with the set of solutions of the given TCSP. Since
no change occurs in any constraint. This algorithm, whichyinqing the set of solutions of a TCSP is NP-hard, it follows

we call Path, is proven to be polynomial for TCSPS (that i that the problem of finding the set of optimal solutions to an
TCSPPs with the semiring.,,,): its complexity isO(n*R?),  gTpP is NP-hard O

wheren is the number of variables arélis the range of the
constraints [Dechtest. al, 1991]. 4 Linear and Semi-Convex Preference
General TCSPPs over the semirifig,, are NP-complete; = .
thus applying Path is insufficient to solve them. On the other unctions
hand, with STPPs over the same semiring that coincide witf he hardness result for STPPs derives either from the nature
STPs, applying Path is sufficient to solve them. In the re-of the semiring or the shape of the preference functions. In
maining sections, we prove complexity results for both genthis section, we identify classes of preference functions which
eral TCSPPs and STPPs, and also of some subclasses of prolefine tractable subclasses of STPPs.
lems identified by specific semirings, or preference functions When the preference functions of an STPP are linear, and
with a certain shape. the semiring chosen is such that its two operations maintain
such linearity when applied to the initial preference functions,
2These properties are trivial extensions of corresponding propetthe given STPP can be written as a linear programming prob-
ties for classical CSPs, proved in [Bistarelt, al, 1997.] lem, solving which is tractable [Cormext. al, 1990]. Thus,

¢ the compositionof two soft constraintd; = (I3, f1)

Ii,a» € L}, where)_ is the generalization of
over sets.



@ (®) Semi-Convex functions are closed under the operations of

(©
/ RN ffl_\ intersection and composition defined in Section 2, when cer-

tain semirings are chosen. For example, this happens with the
fuzzy semiring, where the intersection performsiitia, and

y\ ) & composition performs theaxoperation. The closure proofs
follow.

Theorem 2 (closure under intersection)The property of

(©) (h) 0 functions being semi-convex is preserved under intersection.
That is, given a totally-ordered semiring with an idempotent
M j_lﬂ multiplicative operationx and binary additive operatior
(or > over an arbitrary set of elements), I¢t and f» be

semi-convex functions which return values over the semiring.
. Let f be definedag(a) = f1(a) X f2(a), wherex is the mul-

Figure 1:Examples of semi-convex functions (a)-(f) and NoN-SeM-tiplicative operation of the semiring. Thefis a semi-convex
convex functions (g)-(i) .
function as well.

consider any given TCSPP. For any pair of variabtesnd  Proof: From the definition of semi-convex func-
Y, take each interval for the constraint ovErandY, say tions, it suffices to prove that, for any given the set
[a, b], with associated linear preference functipn The in- S = {z : f(x) > y} identifies an interval. IF is empty, then
formation given by each of such intervals can be representeidentifies the empty interval. In the following we assufe
by the following inequalities and equationyY — Y < b,  tobe notempty.

Y - X < —q,andfxy = c1(X = Y) + c2. Then if we

choose the fuzzy semiring0, 1], max, min, 0, 1), the global {z: f(x) >y} ={z: fi(z) x fo2(z) >y}

preference valu®” will satisfy the inequality” < fx y for = {z: min(fi(z), f-(z)) >y}

each preference functiofiv,y defined in the problem, and ( x is a lower bound operator since it is assumed to be
the objective ismaz (V). If instead we choose the semir- ~jdempotent)

ing (R, min, +, 00, 0), where the objective is to minimize the ={z: fi(x) >y A falz) >y}
sum of the preference levels, we have= f; + ...+ f, and ={z:z €lar, ] Ax € [az, bo]}
the objective isnin(V) 3. In both cases the resulting set of (since each of; and f is semi-convex)
formulas constitutes a linear programming problem. = [maz(ar,az), min(by, bs)]

Linear preference functions are expressive enough fo
many cases, but there are also several situations in which we

need preference functions which are not linear. A typical €X-rporem 3 (closure under composition)The property of
ample arises when we want to state that the distance betwe?urhctions being semi-convex is preserved under composition.

two variables must be as close as possible to a single Valuﬁ"hat is, given a totally-ordered semiring with an idempotent

Unless this value is one of the extremes of the interval, th.‘?‘nultiplicative operationx and binary additive operation-

preferencefncton = o, but ot near ATOUTCaSe or 3 over an arvary setofclements), It and f be
P P emi-convex functions which return values over the semiring.

gle distance value, but in which there are some subintervals, . o .
where all values have the same preference. In this case, tIgBefmef 3s f(a) = Yy yo—q(f1(b) X fa(c)). Thenfis a

preference criteria definestep functiopwhich is not convex. Emi-convex function as well.

A class of functions which includes linear, convex, andpyqof: Again, from the definition of semi-convex func-
also some step functions will be callseémi-convex functions tions, it suffices to prove that, for any given the set
Semi-Convex functions have the property that if one drawsg _ {z : f(z) > y} identifies an interval. I§ is empty, then

a horizontal line anywhere in the Cartesian plane defined by jjentifies the empty interval. In the following we assushe
the function, the set ok such thatf (X) is notbelow the line {5 pe not empty.

forms an interval. Figure 1 shows examples of semi-convex
and non-semi-convex functions. S
More formally, asemi-convex functiois one such that, for {z: f(x) >y}

all Y, the set{ X such thatf(X) > Y} forms an interval. It ={2: 3= (fi(w) X f2(v)) >y}

is easy to see that semi-convex functions include linear ones, . = 12 @ MaXuto=x(f1(1) X f2(v)) >y}

as well as convex and some step functions. For example, tH&INCe + is an upper bound operator)

close to kcriteria cannot be coded into a linear preference = 1% : f1(u) X fa(v) >y for someu andv
function, but it can be specified by a semi-convex preference ~ suchthatr = u + v}

function, which could bef(z) = = for z < k and f(z) = = {x : min(f, (u), f2(v)) >y for someu andv
2k —xfora > k. such thatr = u + v}

( x is a lower bound operator since it is assumed to be

%In this context, the “+” is to be interpreted as the arithmetic idempotent)
operation, not the additive operation of the semiring. ={z: fi(u) >y A fa(v) >y,



for someu +v =z}
={z:u € [a1,b1] Av € [a2, ba],
for someu + v = x and somexy, by, as, b }
(since each of; andf, is semi-convex)
={x:x € a1 + a2, b1 + b2]}
= [a1 + as, by + bg]

a

That closure of the set of semi-convex functions requiresgine preference function as

a total order and idempotence of tixeoperator is demon-

strated by the following example. In what follows we assume

monotonicity of thex operator. Leta andb be preference
values witha £ b, b £ a,a x b < a, anda x b < b,
Supposer; andx, are real numbers with; < z,. Define
g(x) = 1forx < xy andg(x) = a otherwise. Also define
h(z) = b forx < a2 andh(z) = 1 otherwise. Clearlyy
andh are semi-convex functions. Definffe= ¢ x h. Note
thatf(z) = bforz < a1, f(x) =axbforz < < o
andf(xz) = aforx > z,. Since{z|f(z) £ a} includes all
values except where; < z < 2, f is not semi-convex.

Now consider the situation where the partial order is not

total. Then there are distinctincomparable valmasdb that

satisfy the condition of the example. We conclude the orde
must be total. Next consider the case in which idempotenc

is not satisfied. Then there is a preference valgach that

¢ x ¢ # c. Itfollows thate x ¢ < c. Inthis case, setting =

b = c satisfies the condition of the example. We conclud
that idempotence is also required.

The results in this section imply that applying the Path al-
gorithm to an STPP with only semi-convex preference func-

tions, and whose underlying semiring contains a multiplica

tive operation that is idempotent, and whose values are to
tally ordered, will result in a network whose induced soft con-
S

straints also contain semi-convex preference functions. The
results will be applied in the next section.

5 Solving STPPs with Semi-Convex Functions
is Tractable

e

Takeopt as the highegj such thatST P, has a solution. Then
the solutions o671 P, are the optimal solutions of the STPP.

Proof: First we prove that every solution 6" F,,; is an op-
timal solution of STPP. Take any solution 8T F,, say?.
This instantiatiort, in the original STPP, has valuel(t) =
fi(t1) x...x frn(tn), wheret; is the distance; —v; for an as-
signment to the variableX;, X;, (v;,v;) =t lx; x;, andf;
sociated with the soft constraint
<Ii7 fl>, with v; —v; € 1;.

Now assume for the purpose of contradiction thet not
optimal in STPP. That is, there is another instantiatiuch
thatval (') > val(t). Sinceval(t') = fi(t]) x ... X fn(t),),
by monotonicity of thex, we can haveal(t') > val(t) only
if each of thef;(t}) is greater than the correspondifigt; ).

But this means that we can take the smallest such va(ug,

call it w', and construc6T P,,. Itis easy to see thalT P,

has at least one solutiorl, thereforeopt is not the highest
value ofy, contradicting our assumption.

Next we prove that every optimal solution of the STPP is a
solution ofST' P,,;. Take anyt optimal for STPP, and assume

it is not a solution ofST P,,:. This means that, for some
Eonstraint,f(ti) < opt. Therefore, if we computeal(t) in
8TPP, we have thatal(t) < opt. Then take any solution

t' of ST P,,: (there are some, by construction 81 P,;).

If we computeval(t') in STPP, sincex = glb (we assume

x idempotent), we have thaul(¢') > opt, thust was not
optimal as initially assumed™

This result implies that finding an optimal solution of the
iven STPP with semi-convex preference functions reduces to
two-step search process consisting of iteratively choosing a
w, then solvingST P,,, until ST P, is found. Under certain
conditions, both phases can be performed in polynomial time,
e ,

and hence the entire process can be tractable.

The first phase can be conducted naively by trying every
possible “chop” pointy and checking whethe$T P, has a
solution. A binary search is also possible. Under certain con-
ditions, it is possible to see that the number of chop points is

g

a

We will now prove that STPPs with semi-convex preferencedlso polynomial, namely:

functions and an underlying semiring with an idempotent

multiplicative operation can be solved tractably.

First, we describe a way of transforming an arbitrary STPP
with semi-convex preference functions into a STP. Given an

STPP and an underlying semiring withthe set of prefer-
ence values, lef € A and(I, f) be a soft constraint defined
on variablesX;, X; in the STPP, wher¢f is semi-convex.
Consider the interval defined e : z € I A f(z) > y}
(becausef is semi-convex, this set defines an interval for
any choice ofy). Let this interval define a constraint on the
same pairX;, X;. Performing this transformation on each

soft constraint in the original STPP results in an STP, which

we refer to asST P,. (Notice that not every choice gfwill
yield an STP that is solvable.) Lept be the highest prefer-
ence value (in the ordering induced by the semiring) such th
ST P, has a solution. We will now prove that the solutions
of ST P,,: are the optimal solutions of the given STPP.

e if the semiring has a finite number of elements, which
is at most exponential in the numberof variables of
the given STPP, then a polynomial number of checks is
enough using binary search.

e if the semiring has a countably infinite number of ele-
ments, and the preference functions never go to infinity,
then letl be the highest preference level given by the
functions. If the number of values not abdvis at most
exponential im, then again we can findpt in a poly-

nomial number of steps.

The second phase, solving the indu¢gdP,, can be per-

formed by transforming the graph associated with this STP

into a distance graph, then solving two single-source shortest
ath problems on the distance graph [Declteral, 1991].

If the problem has a solution, then for each event it is possi-

ble to arbitrarily pick a time within its time bounds, and find

Theorem 4 Consider any STPP with semi-convex preferenceorresponding times for the other events such that the set of

functions over a totally-ordered semiring withidempotent.

times for all the events satisfy the interval constraints. The



Imaging

pair of domain elements, one can generalize the definition of

Stewing N 5 row convexity to prohibit rows in which the preference values
decrease then increase. This is the intuitive idea underlying
Se'e:e" the behavior of semi-convex preference functions.

7 Summary

Figure 2: Non-semi-convex Preference Function for the LandsatWe have defined a formalism for characterizing problems in-
problem volving temporal constraints over the distances and duration
of certain events, as well as preferences over such distances.

complexity of this phase i®(en) (using the Bellman-Ford This formalism merges two existing frameworks, temporal

algorithm [Cormeret. al, 1990]). CSPs and soft constraints, and inherits from them their gen-
The main result of this discussion is that, while general TC-€rality, and also allows for a rigorous examination of compu-

SPPs are NP-Complete, there are sub-classes of TCSPP préational properties that result from the merger.

lems which are polynomially solvable. Important sources of

tractability include the shape of the temporal preference funcAcknowledgments
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